
© 2022 JETIR July 2022, Volume 9, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2207036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a286

A Case Study of Fifteen Puzzle Problem Using
BFS & DFS

Daneshwari N. Kori, Vandana S.Bhat, Jagadeesh D. Pujari

Department of Information Science and Engineering

SDM College of Engineering and Technology, Dharwad.
danukori21@gmail.com, Vandana.Bhat@sdmcet.ac.in, jaggu_dp@gmail.com

ABSTRACT

BFS is a graph traversal algorithm [2] that begins at the root

node and travels the graph to all of its neighbour. DFS (Depth-

First Search) is a graph-searching technique that begins at the

top and works its way down until it discovers the required

node or the node with no children. On tough issues, best-first

search frequently has exponential space needs. Although DFS

can tackle tough problems with linear space needs, it cannot

take advantage of the vast amounts of additional memory

available on today's computers. We review the question of

whether to utilize best-first or depth-first search. For the first

time, using classic BFS, it was possible to uncover optimal

solutions to specified difficult difficulties (the whole

benchmark set of Fifteen Puzzle issues) thanks to algorithmic

innovations (with the Manhattan distance heuristic only). Due

to its exponential space requirements, it was believed that this

search strategy couldn't solve randomly generated Fifteen

Puzzle instances when practical resource restrictions

applied.The result, of case study demonstrates that, when

hardware and algorithmic advances are combined, the earlier

assessment of best-first search can be revised.

Keywords: BFS, DFS, Manhattan Distance Heuristic, A*

algorithm.

INTRODUCTION

The Fifteen Puzzle Problem [1] has built up a 4x4 board with

16 block slots, 15 of which include tiles with numbers ranging

from 1 to 15. One spot has been left empty. The tile adjacent

to the blank spot has the ability to move. To get to the desired

state, the tiles or blocks must be put in a specific order.

The domain of Fifteen Puzzle puzzles [3], which are made up

of 15 sliding tiles arranged in a four-by-four grid [14]. There

are 16!/2=1013 puzzle configurations in the state space. To be

more specific, we used the conventional benchmark of 100

randomly produced and supplied problem instances. Except

for the Manhattan distance heuristic, none of the compared

algorithms possessed any domain-specific information about

the challenge. In the early 1980s, IDA* [7] used this approach

to solve all 100 issue situations in terms of determining

optimal solutions. Meanwhile, we replicated the experiment by

assigning 43 million nodes to A* on a system with 2 GBytes

of primary storage. It can now address 78 different types of

problems, however the majority of them are straightforward,

and it is still unable to solve the more challenging ones. We

found it more intriguing and hard to attain the desired

improvements in search results rather than trying to gain more

and more primary storage so that A* [4] could solve them all.

With significantly improved heuristic functions, far more

efficient searches are possible, and even solving the Twenty-

Four Puzzle issues is now possible. This, on the other hand,

denotes improvements in the search results, which is an

orthogonal strategy. Since the dawn of knowledge-based

systems, it has been generally understood that increasing the

amount of knowledge provided by humans can greatly

increase performance. In fact, developing such effective

heuristics before solutions are required will not always be

practicable. Another way to improve things is to let the search

engine develop heuristic values on its own.Using this method,

the computer can improve a specified but less optimal static

heuristic.



© 2022 JETIR July 2022, Volume 9, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2207036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a287

The current study makes a contribution by demonstrating how

successfully this strategy may be used in traditional best-first

search. However, even with far greater accessible storage, A*

still does not perform well, and it is superior to its

unidirectional competitors in several areas. As a result, we

decided to investigate heuristic search in this area. BS* [5] is

a classic example of bidirectional heuristic search with "front-

to-end" assessments. On a 2 GByte system, it can answer 95

problem instances. Those circumstances in which it is still

unable to solve are even more numerous. Those circumstances

in which it is still unable to solve are far more challenging than

those in which it is successful. A related method based on

dynamic improvements to the heuristic known as Max-Switch-

A* was said to solve 79 of the provided puzzle instances with

256 MB of storage. We determined that the system with 2

GBytes can solve 99 challenges, but not the collection's most

difficult problem. The simple and straightforward approach [6]

to apply this heuristic to a BS* algorithmic improvement. With

2 GBytes, this combination can solve the entire benchmark set

on the provided system. To the best of our knowledge, it can

solve it faster than any of the Manhattan distance heuristic

methods that have been previously disclosed. In order to make

it self-contained, we review some background information on

the dynamically updated heuristic and the bidirectional

heuristic search method BS*. Then we go into the issues that

arise when they're combined, as well as some concrete

solutions. The effectiveness of the best combination we found

in comparison to the best rivals is finally shown through

experimental results.

A COLLECTION OF PRODUCTION RULES

Step_1: Determine the issues initial and ending states by doing

an analysis of the issue.

Step_2: Gather information about the starting and ending

states.

Step_3: Calculate the production steps for transferring the

issue to the desired state using the starting database.

Step_4:Select a few rules from the list of ones that can be used

to process data.

Step_5: Before going on to the next state, apply those criteria

on the previous state.

Step_6: After applying the rules, find some new created states.

As a result, set them to their current state.

Step_7: Finally, take some data about the objective state and

retrieve it from the previously used present state.

Step_8: Exit.

SOLVING OF 15 PUZZLE PROBLEM

Initial state: The Initial state or Starting state.

Goal state: The Final state or Resulting state.

Step_1: From the initial state, f(x) is the first step needed to

get to the objective state or goal state. Using the formula

f(x) = g(x) + h(x)

where

 g(x) represents the distance from start node.

 h(x) represents the number of misplaced tiles.

Ex: f(x) = 0 + 4 = 4

A

Initial State

B

C

D

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12
1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12



© 2022 JETIR July 2022, Volume 9, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2207036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a288

Step_2: The step needed to travel from the initial state to the

objective state is f(x). The f(x) values of A are 4, B are 4, C

are 2, and D are 4. Take C as the current state to reach the

following state because 2 is the minimum.

E

C F

G

H

Step_3: In this step, four states can be drawn from tray C.

Determine each of their f(x) and select the lowest value. Here,

state E has the lowest number 1, therefore use that as the

subsequent current state.

I

E

J

K

Step_4: Three states can be drawn from the tray E in this step.

Take the lowest one after computing each of their f(x). In this

case, state K has the lowest value. Thus, after a few changes of

tiles in various trays' placements, we arrived at the desired

state.

The Goal State

K

Tiles can be divided into separate sets.

 Precompute a table for each set.

 Don't count moves of tiles that aren't in the set.

 Look up the costs for each set in the database.

It has activated a 4x4 board with 16 block slots, of which 15

blocks contain tiles with numbers ranging from 1 to 15. There

is one empty spot. The neighbouring tile to the empty space

has the capacity to move into it. We need to arrange the tiles in

a particular manner in order to reach the objective state.

Estimated Cost c^(x) = f(x) + g^(x).

f(x) = Length of the path from the root to node x.

g(x) = Estimated Shortest path length from x to goal node.

= Number of non-blank tiles not in the goal position.

A* is a path-finding algorithm [13] that uses heuristics. When

a weighted network and two nodes are provided, the algorithm

determines the shortest path between the two nodes. “Two

functions are used in an algorithm: g(n) and h(n) (n). The cost

from point A to point N, or the sum of the edges linking point

A and point N, is g(n). h(n) is a heuristic, or a function that

calculates the cheapest route from n to the destination. This

function must be acceptable, which means that it should never

overestimate the cost. The priority of the node is represented

by key(n) = g(n) + h(n)”. A lower key value indicates that

travelling through that node is less expensive, resulting in a

higher priority. The algorithm will prioritize the exploration of

nodes. The 15 Puzzle is a well-known heuristic-based

algorithm modelling issue [10]. Two popular approaches to

this issue include counting the number of misplaced tiles and

adding the Manhattan distances between each block and its

location in the goal configuration. In order to progress from

the initial state to the target state in the puzzle, a tile must be

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 15 11

13 14 121 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7

9 10 11 8

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15



© 2022 JETIR July 2022, Volume 9, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2207036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a289

moved to a blank cell at each step. This process is repeated

recursively until the goal state is reached. The basic objective

is to arrange the tiles to achieve the goal in the most effective

way possible. Heuristics Misplaced Tiles [15]. The simplest

heuristic [12] for the n Puzzle is to count the number of

missing tiles. It fails poorly, though, because the heuristic

offers no details on why some tiles are positioned incorrectly,

such as the distance between a misplaced tile and its proper

location. Manhattan Distance (MD) [13]. Instead, we can

combine the MD of each tile's solved position with its present

position. It reduces the amount of moves required for each tile

to reach its solution position. MD outperforms the prior

heuristic and is capable of solving all eight Puzzle cases in a

fair period of time. The fundamental problem with MD [16] is

that it does not account for tile interactions. The cost bound is

incredibly low because it is expected that each tile can travel

independently of the others. By incorporating more of the

board into the heuristic, we can make it better. Using linear

conflicts is one way to do this. We can improve it by

including more of the board into the heuristic, and employing

linear conflicts is one method to do so. There is a general

tendency toward larger lookup tables in exchange for faster

search times. To avoid slowing down the actual search, it is

just more effective to execute calculations ahead of time.

“Using a static additive pattern database with the largest

patterns you can build and store is currently the fastest single

heuristic for optimally solving the n-Puzzle. A 7-8 partition is

sufficient to solve nearly all board states on the order of tens of

milliseconds for the 15 Puzzle, and it consumes about 550 MB

of storage. With enough storage space, you could even use

various database heuristics, such as Walking Distance (WD) [7]

and the 5-5-5 pattern database, to their full potential. Even a 5-

5-5 partition can solve boards in under a second using only 3

MB of storage, which is quite practical to implement if you

have tighter storage constraints. When it comes to pattern

databases, WD is fairly efficient on its own, requiring only 25

KB of storage. If you don't want to use databases at all, your

best bet is to employ as much MD and ID as possible. At this

point, you will be sacrificing a lot of speed for no external

storage or precomputation. This is easily sufficient for the 8

Puzzle, but might not be enough for harder instances of the 15

Puzzle” Heuristics exist for each node (a method used for the

measuring the distance between the current state and the

desired state). Each nodes evaluation function = heuristic +

total moves from initial state.

A* always grows the fringe node with the smallest evaluation

function. When a tile in this pattern is exchanged with a blank

tile, BFS moves the blank tile to a new state. Heuristic search

algorithms are intended to return the best path from one state

to another. We faced a number of challenges, most notably

how to effectively employ the dynamic Max heuristic [8] in a

BS*-like algorithm. This demonstrates that bidirectional

heuristic search was required for this outcome, as no known

unidirectional BFS can resolve all the cases of the given

problem (A* being the best in terms of enlarged nodes). It is

essential to be able to use it both ways. They find the optimal

solution cost as a side effect. However, there are cases where

all that is required is a cost estimate for the best solution.



© 2022 JETIR July 2022, Volume 9, Issue 7 www.jetir.org (ISSN-2349-5162)

JETIR2207036 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a290

DRAWBACKS

1. For the purpose of storing the various trays, this issue

calls for a lot of space.

2. The time complexity of the tasks is higher.

3. When moving tiles within the trays, the user must be

extremely careful.

4. This method can be used to conquer very challenging

puzzle games.

CONCLUSION

Even with the outdated MD heuristic, the conventional

benchmark for Fifteen Puzzle problems can now locate the

best answers using best-first search. Generally speaking, it

addresses these issues faster, especially the trickier ones. This

result was obtained using a dynamically improved heuristic,

but algorithmic changes were necessary. Our biggest challenge

was figuring out how to employ the dynamic Max heuristic

effectively in a BS*-like algorithm. This further demonstrates

the need for a bidirectional heuristic search to reach the

desired outcome, as no known unidirectional BFS (A* being

the best in terms of enlarged nodes) is capable of resolving all

the instances of the given problem. Being able to use it both

ways is essential.

FUTURE SCOPE

When people are waiting for a solution in the seconds to

minutes, solving problems in "real-time" can make a

significant difference. Traditional BFS is capable of

effectively resolving reasonably complex problems on the

machines currently in use.

REFERENCE

[1] M.Sinthiya and Dr.M. Chidambaram, “A STUDY ON

BEST FIRST SEARCH”, International Research Journal of

Engineering and Technology (IRJET), Volume: 03, no. 10,

June-2016.

[2] Andreas Auer and Hermann Kaindl, “ A Case Study of

Revisiting Best-First vs. Depth-First Search”, Proceedings of

the 16th Eureopean Conference on Artificial Intelligence, no. 6,

Valencia, Spain, August 22-27, 2004.

[3] J. Culberson and J. Schaeffer, ‘Searching with pattern

databases’, in Advances in Artificial Intelligence, ed., G.

McCalla, 402–416, Springer Verlag, Berlin, (1996).

[4] R. Dechter and J. Pearl, ‘Generalized best-first strategies

and the optimality of A∗ ’, J. ACM, 32(3), 505–536, (1985).

[5] H. Kaindl and G. Kainz, ‘Bidirectional heuristic search

reconsidered’, Journal of Artificial Intelligence Research

(JAIR), 7, 283–317, (1997).

[6] H. Kaindl, G. Kainz, R. Steiner, A. Auer, and K. Radda,

‘Switching from bidirectional to unidirectional search’, in Proc.

Sixteenth International Joint Conference on Artificial

Intelligence (IJCAI-99). San Francisco, CA: Morgan

Kaufmann Publishers, (1999).

[7] R.E. Korf, ‘Depth-first iterative deepening: An optimal

admissible tree search’, Artificial Intelligence, 27(1), 97–109,

(1985).

[8] R.E. Korf and A. Felner, ‘Disjoint pattern database

heuristics’, Artificial Intelligence, 134, 9–22, (2002).

[9] R.E. Korf and L.A. Taylor, ‘Finding optimal solutions to

the TwentyFour Puzzle’, in Proc. Thirteenth National

Conference on Artificial Intelligence (AAAI-96), pp. 1202–

1207. Menlo Park, CA: AAAI Press / The MIT Press, (1996).

[10] J.B.H. Kwa, ‘BS∗ : An Admissible Bidirectional Staged

Heuristic Search Algorithm’, Artificial Intelligence, 38(2), 95–

109, (1989).

[11] E.L. Lawler and D. Wood, ‘Branch-and-bound methods: a

survey’, Operations Research, 14(4), 699–719, (1966).

[12] G. Manzini, ‘BIDA*: an improved perimeter search

algorithm’, Artificial Intelligence, 75(2), 347–360, (1995).

[13] I. Pohl, ‘Bi-directional search’, in Machine Intelligence 6,

pp. 127–140, Edinburgh, (1971). Edinburgh University Press.

[14] A. Reinefeld and T.A. Marsland, ‘Enhanced iterative-

deepening search’, IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 16(12), 701–709, (July 1994).

[15] L.A. Taylor and R.E. Korf, ‘Pruning duplicate nodes in

depth-first search’, in Proc. Eleventh National Conference on

Artificial Intelligence (AAAI-93), pp. 756–761. Menlo Park,

CA: AAAI Press / The MIT Press, (1993).

[16] W. Zhang and R.E. Korf, ‘Depth-first vs. best-first search:

new results’, in Proc. Eleventh National Conference on

Artificial Intelligence (AAAI-93), pp. 769–775. Menlo Park,

CA: AAAI Press / The MIT Press, (1993).


